History of Nanotechnology

Traditionally, the origins of nanotechnology are traced back to December 29, 1959, when Professor Richard Feynman (a 1965 Nobel Prize winner in physics) presented a lecture entitled “There’s Plenty of Room at the Bottom” during the annual meeting of the American Physical Society at the California Institute of Technology (Caltech). In this talk, Feynman spoke about the principles of miniaturization and atomic-level precision and how these concepts do not violate any known law of physics. Feynman described a process by which the ability to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, and so on down to the needed scale.

He described a field that few researchers had thought much about, let alone investigated. Feynman presented the idea of manipulating and controlling things on an extremely small scale by building and shaping matter one atom at a time. He proposed that it was possible to build a surgical nanoscale robot by developing quarter-scale manipulator hands that would build quarter-scale machine tools analogous to those found in machine shops, continuing until the nanoscale is reached, eight iterations later.
Richard Feynman
Richard Feynman

Printed Carbon Nanotube Transistor

Researchers from Aneeve Nanotechnologies have used low-cost ink-jet printing to fabricate the first circuits composed of fully printed back-gated and top-gated carbon nanotube-based electronics for use with OLED displays. OLED-based displays are used in cell phones, digital cameras and other portable devices.

But developing a lower-cost method for mass-producing such displays has been complicated by the difficulties of incorporating thin-film transistors that use amorphous silicon and polysilicon into the production process.

In this innovative study, the team made carbon nanotube thin-film transistors with high mobility and a high on-off ratio, completely based on ink-jet printing. They demonstrated the first fully printed single-pixel OLED control circuits, and their fully printed thin-film circuits showed significant performance advantages over traditional organic-based printed electronics.

This distinct process utilizes an ink-jet printing method that eliminates the need for expensive vacuum equipment and lends itself to scalable manufacturing and roll-to-roll printing. The team solved many material integration problems, developed new cleaning processes and created new methods for negotiating nano-based ink solutions.
Ink-jet-printed circuit. (Credit: University of California - Los Angeles)
For active-matrix OLED applications, the printed carbon nanotube transistors will be fully integrated with OLED arrays, the researchers said. The encapsulation technology developed for OLEDs will also keep the carbon nanotube transistors well protected, as the organics in OLEDs are very sensitive to oxygen and moisture.

(Adapted from PhysOrg)